

SINGLE-FREQUENCY LASER for research

Features

- High-output power
- Broad-wavelength coverage
- Narrow-linewidth single frequency
- Excellent beam quality

Applications

- Laser cooling
- Rydberg transitions
- Optical traps
- **Qubit gates**
- Optical clock transitions
- Resonant excitation of quantum dots

Vertical-external-cavity surface-emitting laser (VECSEL) a.k.a. Optically pumped semiconductor laser (OPSL)

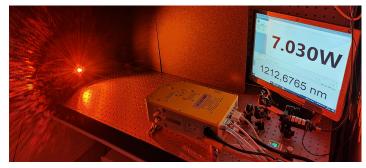
VALO SF	VALOSHG

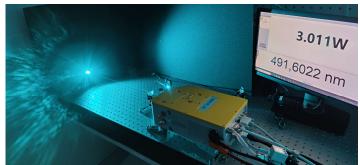
Architecture	Direct emitting VECSEL	Intracavity doubled VECSEL	
Gain	Optically-pumped semiconductor gain mirror		
Target wavelength ¹	700 – 2150 nm	350 – 800 nm	
Free-space output power ²	0.5 – 10 W with integrated pump laser	0.01 – 3 W with integrated pump laser	
Coarse tuning ³	5 – 100 nm	0.5 – 10 nm	
Mode-hop free tuning range ⁴	> 1 GHz	> 2 GHz	
Free-running linewidth	< 10 kHz (10 μs), < 100 kHz (100 μs)		
Slow modulation	Piezo actuator, 10 kHz bandwidth		
Fast modulation (optional)	Intra-cavity electro-optical modulator (EOM), 1 MHz bandwidth		
RMS RIN (typical, unlocked)	< 0.05 % (10 Hz – 3 MHz)		
Power stability (typical, unlocked)	< 0.1 % (1.5 h)		
Beam quality	$M^2 < 1.1 TEM_{00}$	$M^2 < 1.2 \text{ TEM}_{00}$	
Beam diameter and divergence ⁵	Up to 2 mm, up to 5 mrad		
Polarization, linear	Horizontal, p-polarized	Vertical, s-polarized	
Secondary output beam	Not applicable	Secondary output of fundamental wavelength (horizontal, p-polarized)	
Polarization extinction ratio (PER)	> 20 dB, linear polarization		
Laser head dimensions	320 mm x 190 mm x 101 mm (6.1 L)		
Control electronics ^{6,7}	Control Unit for CW operation, height 3U + 1U for ventilation		
Cooling ⁷	Water-to-air chiller, height 4U. Water-to-water and other form factors optional		

² Output power is wavelength dependent. See the next page for typical power levels. Single-stage isolator is recommended for applications with back reflections.

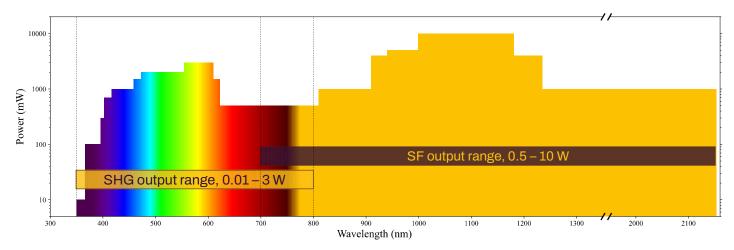
³ Coarse tuning range is wavelength and output power dependent. Maximum 10 THz tuning range corresponds to the typical gain bandwidth.

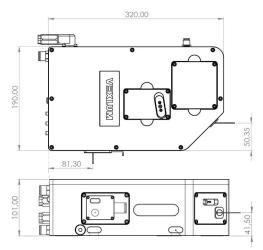
⁴ Mode-hop free tuning range corresponds to the laser cavity free-spectral range scanned with piezo voltage control. Larger tuning range can be reached by adjusting other tuning elements simultaneously.


5 Typical values at the laser exit aperture. Beam diameter = full width at 1/e² level of the beam. Divergence = full mean divergence angle. Values depend on the laser cavity configuration, i.e. the wavelength.


6 The control unit includes a low noise laser diode driver for the pump laser, and up to 5 cavity element temperature controllers, which can be used for wavelength tuning and power optimization.

The control unit and the standard chiller unit are 19" rack mountable


Turnkey single-frequency laser system for AMO research



Versatile VECSEL platform

- Designed to meet the diverse needs of the atomic, molecular and optical (AMO) physics research community
- High output power with excellent beam quality, with small SWaP-C, thanks to simple disk laser geometry
- Efficient ("3-in-1") intracavity second harmonic generation (SHG) for unparalleled visible power and simplicity
- Proven sub-Hz linewidth using intracavity EOM
- Tunable for spectroscopy

